报告题目:Statistical Diagnostics for Time Series Models
报告时间:2025年12月29日中午12:30
报告地点:北湖东校区数统新楼201室
主办单位:激情视频
报告人:刘双喆
报告人简介:刘双喆,教授,现任澳大利亚堪培拉大学科技学院数据科学组组长。他在荷兰阿姆斯特丹大学廷伯根研究所获得计量经济学博士学位,专门研究矩阵微分学、多元分析和统计学习。他的主要工作发表于数学、统计学和相关领域的著名期刊。此外,参与编著了SAS Enterprise Guide进行时间序列分析的综合书籍。担任多家统计期刊的副主编,积极为该领域做出贡献,并在《Statistical Papers》担任编辑工作。
摘要:The reliability of a statistical model hinges on validating its assumptions and identifying influential observations. While regression diagnostics are well-established for linear models, their application to modern time series frameworks—such as those for count data or skewed financial returns—presents significant challenges. This talk introduces powerful diagnostic tools, with a focus on local influence analysis. We develop and apply novel influence diagnostics for Integer-Valued GARCH (INGARCH) models under Poisson-type distributions, which are essential for analyzing discrete data like daily stock transactions or infectious disease case counts. Using real-world applications, we demonstrate how these diagnostics contribute to more robust, reliable, and trustworthy time series analysis in practice.